Non-Zeeman circular polarization of CO rotational lines in SNR IC 443

نویسندگان

  • Talayeh Hezareh
  • Helmut Wiesemeyer
  • Martin Houde
  • Giorgio Siringo
چکیده

Context. We investigate non-Zeeman circular polarization and linear polarization levels of up to 1% of 12CO spectral line emission detected in a shocked molecular clump around the supernova remnant (SNR) IC 443, with the goal of understanding the magnetic field structure in this source. Aims. We examine our polarization results to confirm that the circular polarization signal in CO lines is caused by a conversion of linear to circular polarization, consistent with anisotropic resonant scattering. In this process background linearly polarized CO emission interacts with similar foreground molecules aligned with the ambient magnetic field and scatters at a transition frequency. The difference in phase shift between the orthogonally polarized components of this scattered emission can cause a transformation of linear to circular polarization. Methods. We compared linear polarization maps from dust continuum, obtained with PolKa at APEX, and 12CO (J = 2 → 1) and (J = 1 → 0) from the IRAM 30-m telescope and found no consistency between the two sets of polarization maps. We then reinserted the measured circular polarization signal in the CO lines across the source to the corresponding linear polarization signal to test whether before this linear to circular polarization conversion the linear polarization vectors of the CO maps were aligned with those of the dust. Results. After the flux correction for the two transitions of the CO spectral lines, the new polarization vectors for both CO transitions aligned with the dust polarization vectors, establishing that the non-Zeeman CO circular polarization is due to a linear to circular polarization conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Zeeman Circular Polarization of Molecular Maser Spectral Lines

We apply the anisotropic resonant scattering model developed to explain the presence of non-Zeeman circular polarization signals recently detected in the CO (J = 2 → 1) and (J = 1 → 0) transitions in molecular clouds to Stokes V spectra of SiO v = 1 and v = 2, (J = 1 → 0) masers commonly observed in evolved stars. It is found that the observed antisymmetric “S” and symmetric “∪” or “∩” shaped s...

متن کامل

Proper integration time of polarization signals of internetwork regions using Sunrise/IMaX data

Distribution of magnetic fields in the quiet-Sun internetwork areas has been affected by weak polarization (in particular Stokes Q and U) signals. To improve the signal-to-noise ratio (SNR) of the weak polarization signals, several approaches, including temporal integrations, have been proposed in the literature. In this study, we aim to investigate a proper temporal-integration time with which...

متن کامل

High-resolution radio study of SNR IC 443 at low radio frequencies

Aims. We investigate the morphology at low radio frequencies of the supernova remnant (SNR) IC 443 in detail and accurately establish its radio continuum spectral properties. Methods. We used the VLA in multiple configurations to produce high-resolution radio images of IC 443 at 74 and 330 MHz. From these data we produced the first sensitive, spatially resolved spectral analysis of the radio em...

متن کامل

Circular Polarization of Water Masers in the Circumstellar Envelopes of Late Type Stars

We present circular polarization measurements of circumstellar H2O masers. The magnetic fields in circumstellar envelopes are generally examined by polarization observations of SiO and OH masers. SiO masers probe the high temperature and density regime close to the central star. OH masers are found at much lower densities and temperatures, generally much further out in the circumstellar envelop...

متن کامل

Zeeman tomography of magnetic white dwarfs II . The quadrupole - dominated magnetic field of HE 1045 − 0908 ⋆

We report time-resolved optical flux and circular polarization spectroscopy of the magnetic DA white dwarf HE 1045−0908 obtained with FORS1 at the ESO VLT. Considering published results, we estimate a likely rotational period of P rot ≃ 2.7 h, but cannot exclude values as high as about 9 h. Our detailed Zeeman tomographic analysis reveals a field structure which is dominated by a quadrupole and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013